Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Power efficient MoS 2 synaptic devices based on Maxwell–Wagner interfacial charging in binary oxidesAbstract Synaptic devices with tunable weight hold great promise in enabling non-von Neumann architecture for energy efficient computing. However, conventional metal-insulator-metal based two-terminal memristors share the same physical channel for both programming and reading, therefore the programming power consumption is dependent on the synaptic resistance states and can be particularly high when the memristor is in the low resistance states. Three terminal synaptic transistors, on the other hand, allow synchronous programming and reading and have been shown to possess excellent reliability. Here we present a binary oxide based three-terminal MoS2synaptic device, in which the channel conductance can be modulated by interfacial charges generated at the oxide interface driven by Maxwell-Wagner instability. The binary oxide stack serves both as an interfacial charge host and gate dielectrics. Both excitatory and inhibitory behaviors are experimentally realized, and the presynaptic potential polarity can be effectively controlled by engineering the oxide stacking sequence, which is a unique feature compared with existing charge-trap based synaptic devices and provides a new tuning knob for controlling synaptic device characteristics. By adopting a three-terminal transistor structure, the programming channel and reading channel are physically separated and the programming power consumption can be kept constantly low (∼50 pW) across a wide dynamic range of 105. This work demonstrates a complementary metal oxide semiconductor compatible approach to build power efficient synaptic devices for artificial intelligence applications.more » « less
-
Metasurfaces consisting of an array of planar sub-wavelength structures have shown great potentials in controlling thermal infrared radiation, including intensity, coherence, and polarization. These capabilities together with the two-dimensional nature make thermal metasurfaces an ultracompact multifunctional platform for infrared light manipulation. Integrating the functionalities, such as amplitude, phase (spectrum and directionality), and polarization, on a single metasurface offers fascinating device responses. However, it remains a significant challenge to concurrently optimize the optical, electrical, and thermal responses of a thermal metasurface in a small footprint. In this work, we develop a center-contacted electrode line design for a thermal infrared metasurface based on a gold nanorod array, which allows local Joule heating to electrically excite the emission without undermining the localized surface plasmonic resonance. The narrowband emission of thermal metasurfaces and their robustness against temperature nonuniformity demonstrated in this work have important implications for the applications in infrared imaging, sensing, and energy harvesting.more » « less
An official website of the United States government
